Quiz Comment Box

Search

Interpolation Search

Interpolation SearchThe Interpolation Search is an improvement over Binary Search for instances, where the values in a sorted array are uniformly distributed. Binary Search always goes to the middle element to check. On the other hand, interpolation search may go to different locations according to the value of the key being searched. For example, if the value of the key is closer to the last element, interpolation search is likely to start search toward the end side. Given a sorted array of n uniformly distributed values arr[], write a function to search for a particular element x in the array. Linear Search finds the element in O(n) time, Jump Search takes O(√ n) time and Binary Search take O(Log n) time.

Below are the implementation of above algorithm Interpolation Search into programs

                        
// C program to implement interpolation search
// with recursion
#include 
 
// If x is present in arr[0..n-1], then returns
// index of it, else returns -1.
int interpolationSearch(int arr[], int lo, int hi, int x)
{
    int pos;
    // Since array is sorted, an element present
    // in array must be in range defined by corner
    if (lo <= hi && x >= arr[lo] && x <= arr[hi]) {
        // Probing the position with keeping
        // uniform distribution in mind.
        pos = lo
              + (((double)(hi - lo) / (arr[hi] - arr[lo]))
                 * (x - arr[lo]));
 
        // Condition of target found
        if (arr[pos] == x)
            return pos;
 
        // If x is larger, x is in right sub array
        if (arr[pos] < x)
            return interpolationSearch(arr, pos + 1, hi, x);
 
        // If x is smaller, x is in left sub array
        if (arr[pos] > x)
            return interpolationSearch(arr, lo, pos - 1, x);
    }
    return -1;
}
 
// Driver Code
int main()
{
    // Array of items on which search will
    // be conducted.
    int arr[] = { 10, 12, 13, 16, 18, 19, 20, 21,
                  22, 23, 24, 33, 35, 42, 47 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    int x = 18; // Element to be searched
    int index = interpolationSearch(arr, 0, n - 1, x);
 
    // If element was found
    if (index != -1)
        printf("Element found at index %d", index);
    else
        printf("Element not found.");
    return 0;
}                         
                            
                          
                               
                        
                         Code 
                    
                        
// Java program to implement interpolation
// search with recursion
import java.util.*;
 
class GFG {
 
    // If x is present in arr[0..n-1], then returns
    // index of it, else returns -1.
    public static int interpolationSearch(int arr[], int lo,
                                          int hi, int x)
    {
        int pos;
 
        // Since array is sorted, an element
        // present in array must be in range
        // defined by corner
        if (lo <= hi && x >= arr[lo] && x <= arr[hi]) {
 
            // Probing the position with keeping
            // uniform distribution in mind.
            pos = lo
                  + (((hi - lo) / (arr[hi] - arr[lo]))
                     * (x - arr[lo]));
 
            // Condition of target found
            if (arr[pos] == x)
                return pos;
 
            // If x is larger, x is in right sub array
            if (arr[pos] < x)
                return interpolationSearch(arr, pos + 1, hi,
                                           x);
 
            // If x is smaller, x is in left sub array
            if (arr[pos] > x)
                return interpolationSearch(arr, lo, pos - 1,
                                           x);
        }
        return -1;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
 
        // Array of items on which search will
        // be conducted.
        int arr[] = { 10, 12, 13, 16, 18, 19, 20, 21,
                      22, 23, 24, 33, 35, 42, 47 };
 
        int n = arr.length;
 
        // Element to be searched
        int x = 18;
        int index = interpolationSearch(arr, 0, n - 1, x);
 
        // If element was found
        if (index != -1)
            System.out.println("Element found at index "
                               + index);
        else
            System.out.println("Element not found.");
    }
}                          
    
                        
                         Code 
                    
                        
# Python3 program to implement
# interpolation search
# with recursion
 
# If x is present in arr[0..n-1], then
# returns index of it, else returns -1.
 
 
def interpolationSearch(arr, lo, hi, x):
 
    # Since array is sorted, an element present
    # in array must be in range defined by corner
    if (lo <= hi and x >= arr[lo] and x <= arr[hi]):
 
        # Probing the position with keeping
        # uniform distribution in mind.
        pos = lo + ((hi - lo) // (arr[hi] - arr[lo]) *
                    (x - arr[lo]))
 
        # Condition of target found
        if arr[pos] == x:
            return pos
 
        # If x is larger, x is in right subarray
        if arr[pos] < x:
            return interpolationSearch(arr, pos + 1,
                                       hi, x)
 
        # If x is smaller, x is in left subarray
        if arr[pos] > x:
            return interpolationSearch(arr, lo,
                                       pos - 1, x)
    return -1
 
# Driver code
 
 
# Array of items in which
# search will be conducted
arr = [10, 12, 13, 16, 18, 19, 20,
       21, 22, 23, 24, 33, 35, 42, 47]
n = len(arr)
 
# Element to be searched
x = 18
index = interpolationSearch(arr, 0, n - 1, x)
 
if index != -1:
    print("Element found at index", index)
else:
    print("Element not found")                         

                        
                         Code 
                    

Sample Output

Input a[]={1,2,3,4,50,60},x=40

Output =4

Element x is found in index 4

Time Complexity

Time Complexity: O(log2(log2 n)) for the average case, and O(n) for the worst case (when items are distributed exponentially)

Visualized

Note: For better Visualized Understanding visit our algorithm Visualizer

Visualize
previous

Binary Search